Escolha automática da métrica de distância em problemas de regressão
Data
Autor(es)
Orientado(es)
Doutor Renato Miranda Filho
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
Este trabalho examina a importância da escolha da medida de distância apropriada em algoritmos de aprendizado de máquina, especificamente em problemas de regressão. A distância euclidiana é comumente usada, mas o estudo descobriu que a medida de distância pode afetar o acerto do modelo de regressão e propõe duas soluções para determinar a medida apropriada. A primeira avalia a variância das distâncias entre instâncias, enquanto a segunda usa uma heurística que considera a linearidade entre as distâncias e as saídas obtidas. No total, avaliamos a escolha das medidas de distância (11 possibilidades) em 10 conjuntos de dados disponíveis publicamente. A heurística da linearidade teve uma maior correlação com a saída do regressor avaliado e, portanto, conseguiu escolher as melhores medidas a serem utilizadas nos conjuntos de dados avaliados neste trabalho.
