Comparative analysis between genetic programming and machine learning algorithms in forecasting financial trends
| dc.contributor.advisor | Doutor Carlos Alexandre Silva | |
| dc.contributor.author | Pedroza, Marcos Vinícius Rosa | |
| dc.date.accessioned | 2025-09-15T22:34:41Z | |
| dc.date.issued | 2025-08-29 | |
| dc.description | Este estudo, intitulado Comparative analysis between genetic programming and machine learning algorithms in forecasting financial trends, foi aceito como artigo completo no XXV ENIAC (Encontro Nacional de Inteligência Artificial e Computação) | |
| dc.description.abstract | This study presents a comparative analysis of Genetic Programming (GP) and five machine learning (ML) algorithms, namely Support Vector Machines (SVM), AdaBoost, XGBoost, Long Short-Term Memory (LSTM), and Deep Neural Networks (DNN), in the task of financial trend forecasting. We use historical daily data from the NASDAQ, S&P 500, and Nikkei 225 indices, covering the period from January 2015 to January 2025. Model performance is evaluated using Sharpe and Sortino Ratios, capturing both accuracy and risk-adjusted return. Results show that GP exhibits greater stability in Asian markets, while LSTM and XGBoost achieve better performance in North American markets. | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14387/2571 | |
| dc.language.iso | Português | |
| dc.publisher.campi | Sabará | |
| dc.publisher.country | Brasil | |
| dc.publisher.institution | IFMG | |
| dc.rights | Acesso aberto | |
| dc.subject.keyword | inteligência artificial - Programação genética | |
| dc.subject.keyword | Aprendizado do computador | |
| dc.subject.keyword | Finanças - Previsão | |
| dc.subject.keyword | Algoritmos computacionais | |
| dc.title | Comparative analysis between genetic programming and machine learning algorithms in forecasting financial trends | |
| dc.type | Trabalho de Conclusão de Curso |
Arquivos
Pacote original
1 - 1 de 1
Carregando...
- Nome:
- Comparative_Analysis.pdf
- Tamanho:
- 506.05 KB
- Formato:
- Adobe Portable Document Format
- Descrição:
- Este estudo, intitulado Comparative analysis between genetic programming and machine learning algorithms in forecasting financial trends, foi aceito como artigo completo no XXV ENIAC (Encontro Nacional de Inteligência Artificial e Computação)
Licença do pacote
1 - 1 de 1
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.79 KB
- Formato:
- Item-specific license agreed to upon submission
- Descrição:
