Logo do repositório
Idioma
  • English
  • Español
  • Português do Brasil
  • Entrar
    ou
    Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
Logo do repositório
  • Navegar
  • Sobre o RI-IFMG
Idioma
  • English
  • Español
  • Português do Brasil
  • Entrar
    ou
    Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Silva, Kevenn Henrique de Paula"

Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Item
    Redução de dimensionalidade em dados de clima com uso de Stacked Autoencoders.
    (2023-12-11) Silva, Kevenn Henrique de Paula; Doutor Ciniro Aparecido Leite Nametala
    Durante as últimas décadas, as bases de dados vêm crescendo exponencialmente. Esse aumento não ocorre somente na quantidade de amostras de dados, mas também em relação à quantidade de características que descrevem as variáveis, deixando os datasets cada vez mais massivos. Devido a isso, torna-se necessária uma simplificação desses conjuntos de dados por meio de uma redução nessas dimensionalidades. Os dados climáticos são exemplos de dados que, geralmente, possuem muitas amostras e características envolvidas. Estes fatores acarretam uma alta dimensionalidade e, por sua vez, esse cenário afeta o custo computacional e a capacidade preditiva, prejudicando a busca por padrões e descoberta de conhecimento. Além disso, a redução de dimensionalidade irá beneficiar a visualização e o armazenamento de grandes conjuntos de dados climáticos. Desse modo, este trabalho propôs utilizar uma Rede Neural Artificial (RNA) com arquitetura Autoencoder (AE), especificamente um tipo chamado de Stacked Autoencoder (SAE), para realizar a compressão de dados climáticos de entrada, criando uma representação compacta e de menor dimensão. Após isso, com a capacidade do AE de reconstruir os dados de entrada a partir dessa representação latente, verificou-se que a redução de dimensionalidade é boa o suficiente para reconstruir os dados. Estes dados reconstruídos foram avaliados por meio do erro quadrático médio (EQM), obtendo-se um valor de 0.01605. Com esse resultado, é possível confirmar que a RNA cumpriu sua função de reduzir a base de dados climáticos.

Nossas Redes:

Rede de Bibliotecas
Logo do repositório

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão

Desenvolvido por

Neki Acervos