Logo do repositório
Idioma
  • English
  • Español
  • Português do Brasil
  • Entrar
    ou
    Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
Logo do repositório
  • Navegar
  • Sobre o RI-IFMG
Idioma
  • English
  • Español
  • Português do Brasil
  • Entrar
    ou
    Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Leite, André Nery Cruz"

Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Item
    Uso de Ensemble Learning para controle de qualidade de hortaliças
    (2024-09-24) Leite, André Nery Cruz; Carlos Dias da Silva Junior
    O desenvolvimento da tecnologia para a agricultura tem se mostrado essencial para aumentar a eficiência na detecção de doenças em plantas e, consequentemente, melhorar a produção agrícola. Nesse contexto, este trabalho apresenta uma proposta voltada para a implementação de um sistema de classificação de doenças em plantas, utilizando técnicas de aprendizado de máquina. O objetivo principal foi construir um modelo capaz de identificar doenças específicas em cultivos de batata, milho e tomate, auxiliando os agricultores. Foram implementados e testados diferentes modelos de classificação, como Decision Tree, Random Forest, Support Vector Classification (SVC), K-Nearest Neighbors (KNN), Gradient Boosting e Stacking Learning, a fim de selecionar o mais preciso para essa aplicação. O sistema foi desenvolvido em Python, utilizando a biblioteca Scikit-Learn, e os modelos foram avaliados com base em métricas como Erro Médio Absoluto (MAE), Erro Quadrático Médio (MSE), Raiz do Erro Quadrático Médio (RMSE) e acurácia. Os resultados indicaram que o modelo de Stacking Learning apresentou o melhor desempenho na classificação das doenças, destacando-se pela precisão superior. Adicionalmente, foi criada uma interface em React Native, facilitando o uso do sistema em dispositivos móveis. A partir da conclusão deste trabalho, foi possível propor uma ferramenta para o diagnóstico automatizado de doenças em plantas, oferecendo um apoio relevante para a agricultura e o manejo mais eficiente das culturas.

Nossas Redes:

Rede de Bibliotecas
Logo do repositório

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Enviar uma Sugestão

Desenvolvido por

Neki Acervos